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POSSOL Poisson Equation Solver

by
Villiam J. Orvis

ABSTRACT
POSSOL is s two-dimensional Poisson solver for problems with arbitrary non-
uniform gridding in cartesian coordinates. Actually, it will solve the Heimholtz
equation on an arbitrary, non-uaiform grid on s rectangular domain with unmixed
boundary conditions. The routine is similar to PWSCRT developed by Schwarzirauber
and Sweet at the National Center for Atmospheric Research. The routine is also

amenasble to the capacitance matrix technique which can be used to solve problems
with mixed boundary conditions.

INTRODUCTION

In 1975, Schwarztrauber and Sweet at the National Center for Atmospheric Research
(NCAR) wrote a set of FORTRAN subroutines for solving the Helmholtz equation in tvo
dimensions!. These routines all use the Buneman varisat of cyclic reduction lo solve
the standard, five point difference approximation in several different coordinate

systems:
Rout Coordi
PWSCRT Cartesian
PWSPLR Polar
PWSCYL Cylindrical
PWSCSP Spherical with sxisymmetry
PWSSSP Spherical on the unit sphere

All of these routines require s uniform mesh and unmixed boundary conditions. For my
semiconductor device modeling work, I needed to solve the Poisson equation on & non-

uniform mesh in cartesian coordinates. As a result, | have created the subroutine



POSSOL which is similar to PWSCRT, but aliows a non-uniform mesh. [ also needed to be
able to have mixed boundary conditions on sny side of the problem, but the routines
listed above (including POSSOL) only allow one type of boundary condition on any one
side. In order to handle more than one type of boundary condition on a side, |
developed a form of the capacitance matrix technique around POSSOL.



METHOD

POSSOL
The five routines mentioned above solve the Heimholtz equation in two dimensions.
V2y. AU=f (1)

using a five point difference approximation. Four of the five subroutines (PWSCRT,
PWSPLR, PWSCYL and PWSSSP) solve this approximation with the routine POIS, which
solves the following linear system of equations,
AG)*UG-1,j) » BG)*UC(L{) + C(D)*UCi»1,§) »
U(i,j-1) - 2.2U0i,1) + UGj+1) = I(ij). )
where A, Band C are constant coefTicient arrays.
The other routine (PWSCSP) uses the routine BLKTRI which solves the following
slightly different set of linear equations,
ANG)*U(,j-1) + AM(i)*U(i-1,§) » (BN(j) + BM(i)) * U(ij) »
CN(1)*U(,j+1) + CM(i)*UCi+1,§) = I(i,§). (3)
where AN, AM, BN, BM, CN and CM are constant, coefficient arrays. In both cases, i
ranges from | to m+1 and j ranges from 1 to n+1, vhere m and n are the number of
panels in the xand y directions (i.e. there are m+I and n+] grid points in the xandy
directions respectively).
The routine PWSCRT uses the routine POIS to solve the Helmholtz equation in
cartesian coordinstes on a uniform mesh. The x coordinate ranges from A o Band the y

coordinate ranges from C to D. The Helmholtz equation in two-dimensional cartesian

coordinates is,
d2U d%u
..... + ————— + AU = f (4)
bxz byz



This equation is discretized on the uniform mesh:
Ax=(B- A)/m
Ay=(D-C)/n

(17Ax) * (UGi+1,§) - 2*UG ) + UG-1,§)) +
(1/Ay) * (UGLj+1) - 2*°UG,H) + UG-1) « A * UG = FG ()
These equations can easily be put into the form required by POIS (equation 2 above) by
multiplying through with Ay.
However, for my problem, Ax and Ay are functions of x and y respectively, which
results in a much more complicated discrete equation. The non-uniform mesh is

devfined with:

Ax* = x(i+1) - x(i)
Ax- - x(i) - x(i-1)
Ax = (Ax* + Ax)/2

Ay* ~y(j+1)- y(j)
Ay = y(j) - y(j-1)
Ay =(Ay* + Ay-)/2

and the discrete equation is:

—— [ - ] +

Ax Arx* Ax-

1 U(Lj«1)-UG))  UGLj-UG-1)
- - - 1 « A*UGLH) = £(i5) (6)
Ay Ay* Ay-

Now, this equation can not be put into a form that POIS can use, but is already in a form

that can be solved by BLKTR]. The constants in equation 3 are defined with,

AM(i) ~ 1/(Ax * Ax)
BM(i) =-2/(Ax** Ax-) + A
CM(i) = 1/(Ax* * Ax)



AN(j)) = 1/(Ay * Ay)
BN(j) =-2/(Ay* * Ay)
CNG) = 1/(Ay* * Ay) (7)

Note that A could have been added to BM or BN with equal results.

Now., the boundary conditions need to be added by modifying the right or left sides
of those equations, defined by equation 3, that involve grid points along the
boundaries. This must be done because BLKTRI is only an equation solver, and does not
autoimatically insert boundary conditions. There are three possibie types of boundary

conditions that can be used with this routine: fixed, derivative or periodic. For example,
consider the one-dimensional equation with U(i)=Ug for i = 0. In this problem, the

equation ati =1 is:

AN(1)*Ug + BN(1)*U(1) + CN(1)*U(2) = F(1) (8)
which we reorganize to:

BN(1)*U(1) + CN(1)*U(2) =F(1) - AN(1)*Ug 9)
We then redefine AN(1) and F(1),

F(1) = F(1) - AN(1)*Ug

AN(1) =0 (10)

before calling BLKTRI. Note that they must be redefined in the order shown above.
For derivative boundary conditions, ati = 1, of the form:

U

- -BDA (11)

ox
where BDA is the value of the derivative. We first finite difference equstion (11) at the
pointi=1,

(U(2) - U(0))/(2* Ax) = BDA _ 12)
Next, we solve it for U(0) and insert it into the problem equation(a one-dimensional
version of equation 3)ati~1,

AN(1)*(U(2)-2* Ax*BDA) + BN(1)*U(1) + CN(1)*U(2) - F(1) (13)

Equation 13 is then reorganized into,



BN(1)*U(1) + (AN(1)+CN(1))*U(2) = F(1) +2* Ax*BDA*AN(1) (14)
and, as before, we then redefine the terms CN(1), F(1) , and AN(1) (in that order):

CN(1) = CN(1) + AN(1)

F(1) «F(1) + 2* Ax*BDA*AN(1)
AN(1) =0 (13)

before calling BLKTRI.

Finally, for periodic boundary conditions, we assume that U(m) = U(0),

U(m+1) = U(1) etc., in which case, AN, BN and CN take on their normal values
(equation 7).

For the two-dimensional problems solved by POSSOL, the methods described above
are applied to all of the grid points on the four boundaries. In which case, Ug and BDA
become arrays, with one value for each grid point along the boundary i = 0. Six other
arrays are defined to hold the values along the other three boundaries.

There isone more situation that must be considered for 8 general purpose equation
solver, and that is the case where A is zero and the boundary conditions are all either
derivative or periodic. In this case a sofution may not exist, and if one does, it is not
unique (i.e.if U isa solution, U + Ug is aiso a solution for any constant Uy ). Ifa
solution does exist, then the calling program must determine what constant, if any,
must be added to the solution. As to the existance of a solution, the following
paragraphs will explain how POSSOL treats that problem.

Consider the matrix equation that represents the discrete form of some equation
being solved with POSSOL.:

AU=f (16)
where A is s matrix and U and f are vectors. While the original equation from which
this set of discrete equations was formed may have had a solution, the process of finite
differencing it, plus round-off error may have resulted in a set of equations with no
possible solution. In their report, Swarztrauber and Sweet describe a way to correct

this situation. They show that equation (16) has s solution if and only if,



atf-0 (17)
for all h defined by,

Ath -0 (18)

Using (17) and (18), we determine s perturbation to f in equation (16) that will
insure that it has a solution,

p= (ht/htele (19)
where e isthe unit vector (1,1,1...).

We then create & new right hand side for equation 16,

g-f-p (20)
where g isthe new right hand side. Note that as long as the perturbation on f is small
compared to f, the resulting solution from POSSOL will be correct. If the perturbation
is large, then you will end up sofving s completely different problem. This usually
indicates that your original equaiton does not have s solution or that you have made an
error while inputting it. Therefore, the value of the perturbation (p) should be
checked after control is returned from POSSOL and compered with the values in the
vector f. If p is large compared to f then the calling program should take appropriste
action.

For a problem solved with POSSOL, h can be broken into an x partand a y part as,
h=h;t hy (¥4})
Then, for either of these two components of h there are two possible combinations of
boundary conditions: derivatives specified at both ends, or periodic. For derivative
boundary conditions, the value of a component of Ry (or Ay ) can be determined from
equation 18 to be ,

by(k) = (hy(1)/Axy )N (Axg_1 +Axg) (22)

where,

Axg =x(k+) - x(k)



the arguement of h,, refers to the grid point and hy(1) is arbitrary. This equation can
be simplified by letting h,(1) equal Axy and then inserting for Axg_1 and Axg to
give,

hy(1) = x(2) - x(1)

hy(kmax}= x(kmax) - x(kmax-1)

hy(K) = x(k+1) - x(k-1) (23)
where | and kmax are the grid points at the boundaries.

The second case has periodic boundary conditions, which gives a slightly different
value for hy. The general expression is,

hy(k) = (hy(kmax)/(Axgmex-1 * AXgmax)(Axg_1 + Axg) (29)
which can be reduced to,

h,(1) = x(2) - x(1) + 2(kmax) - x(kmax-1)

b, (kmax) = h(1)

hy(k) = x(k+1) - x(k-1) (23)

The equations for y follow in exactly the same manner, with the final equation for
h following from equation (21),
hij =hyli) hy(j) (26)
Appendix 1 contains the POSSOL interface and subroutine that prepares the problem
for solution with BLKTRI.
TISTING
Appendix 2 contsins an example problem used to test POSSOL. First, a non-linear
grid is mapped onto & rectangular domain. Then, the equation:
U=05+sin(2* Ti*x/xlen)*sin(2* *y/ylen) @n
where xlen and ylen are the length and width of the problem, is inserted into
equation 1 and a right hand side (f) is calculated at every point on the grid. This
problem was then solved with POSSOL and the result compared with equation 27. The
example shown in appendix 2 has fixed boundary conditions along the x boundaries and



derivative boundary conditions slong the y boundaries. Several varistions of this
program were run (o test various combinations of fixed, derivative and periodic
boundary conditions, and the results were all nearly identical. The only cases where
the results were not identical to equation 27 was where there were derivative and/or
periodic boundary conditions on all sides, resulting in 2 problem without a unique
sofution. The solution returned by POSSOL was centered on Zero rather then raised
above zero by 0.5 as specified by equation 27. This is not an unexpected result, since
any constant may be added to the equasiton, for this case, and still be a solution.

ACCURACY AND TIMING

The errors encountered in the test problems described above had maximum values of
sbout 0.1 % of the analytic solution. According to Schwarztrauber and Sweet, their
equation sotvers will all give much better accuracy (10-8% on & CDC 7600) for a problem
where the derivatives are calculated with the same finite difference equations as are
used by the solver rather than using analytic derivatives to calculate the right hand
side of the equation. The difference is probably due to errors induced by discretizing
the analytic equations.

Timing for POSSOL was not messured, however, it should be similar (o that for the
routine PWSCSP. Therefore, | have listed the accuracy and timing data for that routine
(Table 1). This data is generated by defining random dats on an m+1 by n+1 grid;
inserting that into a finite differenced form of equation 1 to calculate the right hand
side and then solving it with PWSCSP to get the original data back.!

TABLE 1 Accuracy and timing for PWSCSP!
m

n Execution Time Msx. Absolute
(msec) Difference
32 32 61 2.1%10-12
64 64 284 17+10-1!
128 128 1341 1.1*10-10



AVAILIBILITY

POSSOL will be available here at LLNL in MSSL (Math and Statistics Software
Library). BLKTRI is available from the National Center For Atmospheric Research, Box
3000, Boulder, Colorado. It is aiso available here in MSSL.

CAPACITANCE MATRIX

The capacitance matrix method is a technique for separating & matrix problem into
tvo parts, which can then be soived separately and then recombined in a manner that
gives the correct solution to the original matrix.2.3 It can be used to aliow problems
with a mixture of fixed and derivative boundary conditions on an edge to be solved with
8 solver that only allows one type of boundary condition along an edge. Iused it here
to separate the discrete form of the Poisson equation with mixed boundary conditions
into a part with unmixed boundary conditions that can be solved with POSSOL, and s
smalf sub-matrix that can be sofved with a simpie matrix soiver. These two matrix
solutions are then recombined to give the solution to the original problem.

Consider the following matrix equation,

Au-=f (28)
where A isa square m by m matrixandu and f are vectors of length m. Assume now
that A consists of two parts: Ap thet is compstable with our mstrix solver; and a small
part Ag that is not. We define A as,

A-[AglAy] (29)
Next we define a matrix B that is solvable with our matrix sofver,

B - [BylAzl] (30)
Note that B consists of the solveable part of A plus another part that has been adjusted
to make the whole matrix equation solvable with the matrix sofver. What this amounts
o with the Poisson equation is taking a side of the problem that is part fixed and part

derivative boundary conditions, and rewriting the boundary condition equations to

10



make the whole side derivative (or fixed) boundary conditions. For example, A} could
consist of those boundary condition equations that describe the portion of the
boundary with fixed boundary conditions, and A2 would consist of the rest of the
problem. By would then be a new set of boundary condition equations describing the
same boundary as Aj but with derivative boundary conditions instead of fixed ones.
Using B, we define a8 new solution vector 0 ,

Bo-f (31
and a new matrix C (the capacitance matrix),

C =1A110] B-! [w,10] (32)
where Wy is the identity matrix for Ay. Note that the non-zero partof € (Cy)is
generally much smaller than A. We define B8 with the equation,

CyB =11 -Aq0 (33)
where f; is that part of f that goes with Ay, and then solve

Bu-f+[Wgjol8 (34)

to get u, the solution of the original equation.

ACCURACY AND TESTING
Appendix 3 contains an example of an implementation of this method with POSSOL as
the main matrix solver. The problem solved is the same as that solved in appendix 2, but
with & mixture of derivative and fixed boundary conditions along one side. This
problem also requires the general matrix equation solver routine combination DEC/SOL
to solve the small capacitance matrix equstion (33). DEC doesan L/U decomposition of
the matrix and SOL back substitutes to get the final solution. The accuracy in this
example problem was similar to that for POSSOL alone.

For a single solution, this method should take a little more than twice the amount of
time as POSSOL to solve a problem, since it requires two solutions with POSSOL plus a

solution of & small matrix with DEC/SOL. For problems that solve Poissons equstion

g



several times on a fixed grid, the first POSSOL solution and the L/U decomposition of the
matrix C can be done once and the results ssved and reused for each additional solution
of the problem. If s large number of solutions are performed, this should
approximately cut the time per solution in haif.

12
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APPENDIX 1

|

1 moutlm possol (intl,x,n,sbdend,bda,bddb,y,n, nbdend, bde,
2 bdd, clﬁdﬂ f, Idl-f,p.'trb iarror,®)
3¢

PP e

Sc

] subroutine possol

7e

8 ¢ willian J. Orvis 3712/65

9¢ iawrenca |ivaracre national (aboratory

@c | ivarmore, california

1e

b

poisson equation solvar with a nonunifora grid.

this routine is an adaptation of the routine pescrt by:

p. searztrauber and rr. sweet of ncar. it differs froa thot routine

in that it allows a non-unifora grid to ba used rathar then o

unifore grid. the routine bikiri from ncar is required.

p. schearztrauber, r. seeat, "efficient fortran w for tha

solution of .Illptlc ptrtial differential equations,” ncar/tn-100+1a,

national center for atmospheric research, bouider, co, july, <1973).
if you have o0 unifora grid, pescrt will be faster.

D

Pt heh pub fut b i g b
OOV N
nonNDnNPoDDOHODDON
SR BRI RERRERERS

subroutina possol soives tha standard five-point finite
di fference approximation to the heisholtz equation in cartesian
coordinates:

(d/dxXd/dxu + (d/dyd(d/dyi + lambda®u = f(x,y).
the argments are dafined as:

 EENEREERERER on input  EEEERENXEN

intl
=@ initial call, quantities that depand on nbdend and u are
calculated and stored in w bafore doing a solution
=] after the Initial call, as long as nbdend and y dont change
batesen steps. this is cbout 588 faster than with inti=@.

x
an s+l dimensional array containing the x grid
x(m+1) sust ba greater than x(1) tha boundaries of the grid are:
a=x(1) to b=x(m+l).

tha number of panels into shich the interval (a,b) is
subdivided. hance, there will be sl grid points in the
x-direction givan by xCi) for | = 1,2, ... 8¢,

s sust ba greater then 4.

sbdend
indicates the type of boundary conditions at x = a and x = b.

HLBBAE322352332288YRRLBRLBUBIBRRIRNNE
NNANDDONANDNANDODNDONNODNONDDNANNDNNNNNNDN
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if the solution is periodic inx, i.a., u(l,)) = ule+t,)).
if tha solution is specified at x = a and x = b.

if the solution is spacified at x = a and tha derivative of
tha solution with respect to x is specified at x = b.

if tha derivativa of tha solution with respect to x is
spacified ot x = a and x = b.

if the darivativa of the solution with respect to x is
spacifiad at x = g and the solution is specified at x = b.

» W N=®

bda

a one—dimansional array of length ntl that spacifies the values
of the derivative of the solution sith respect to x at x = a.
whan sbdond = 3 or 4,

bda(j) = (d/dxxn€a,y¢jr’, j = 1,2,...,n¥
whan sbdond has any other value, bda is o dusay variabla.

o ona~dimensional array of length ntl that spacifies the voluas
of the derivative of the solution with respect to x at x = b.
whan abdend = 2 or 3,

bdb<j) = (d/dxXulb,y<jr), j =1,2,... ,nl
shan abdcend has any othar valua bdb is o dumay variable.
on 1l disensional arroy containing the y grid,

yin+ti) asust be greater than y(i) the boundories of the grid are:
cmy(1) to dmyintl).

the rumber of panels into shich the interval (c,d) is
subdividad. hance, thare will be ntl grid points in the

CESRSRRRBRBIIIIAIINNISEIRRIEI2IL 288

noDDADNRRONDONDODNDDODDDRODRDNDANDODDOODOOANDRDONDBDDADRPDONDD

o2 y-diraction givan by y(j) for j = 1,2,... ,n#l

<) if nbdend = @ than n sust ba equal to 2%k,

o4 if nbdend = 1 than n sust be equal to 2%%.

o3 if nbdend = 2 than n sust ba equal to 2%%k-1.

o8 {f nbdond = 3 then n sust be equal to 2%6k-2.

9 if nbdend = 4 than n sust ba aqual to 2%%-1.

o8 thea operational count of the solver is anlog2n so sdka na for the
) bast afficiency.

100

101 nbdend

182 indicates tha type of boundary conditions at y = c and y = d.
103 ¢

184 ¢ =@ If the solution Is periodic iny, |.a., uli,1) = uCl,ntl).
185 ¢ =1 if the solution is specifiedat y=cand y = d.

166 c = 2 jf the solution is specifiad at y = ¢ and the derivative of
167 ¢ the solution eith respect to y is specified at y = d.

168 c =3 if the derivative of the solution with respect to y is
189 c specified at y = c and y = d.

110 ¢ =4 |f the derivative of the solution with respact to y is
111 ¢ spacified ot y = ¢ and tha solution is specified at y = d.
112 ¢

113 ¢ bde

15



114 ¢
115 ¢
116 ¢
117 ¢
i18 ¢
118 ¢
120 ¢
121 ¢
122 ¢
123 ¢
124 ¢
125 ¢
126 ¢
127 ¢
128 ¢
120 ¢
130 ¢
131 ¢
132 ¢
13 ¢
124 ¢
13 ¢
138 ¢
137 ¢
138 ¢
130 ¢
140 ¢
141 ¢
142 ¢
143 ¢
144 ¢
143 ¢
146 ¢
14?7 ¢
148 ¢
149 ¢
158 ¢
151 ¢
152 ¢
153 ¢
14 c
1B c
158 ¢
157 ¢
138 ¢
199 ¢
168 ¢
161 ¢
162 ¢
163 ¢
164 ¢
165 ¢
166 ¢
167 ¢
168 ¢
160 ¢
178 c
1?1 ¢

o ore—dimansional array of langth s+l that specifies the valuss
of tha derivative of the solution with respect to y at y = ¢.
whan nbdend = 3 or 4,

bde(i) = (d/dydulxCid,e), | = 1,2,... a4

whan nbdend has any other value, bdc is o dusay variable.

a one—dimansional array of length a1l that specifies tha valuas
of the darivativa of the sclution with raspect to yat y = d.
whan nbdend = 2 or 3,

bdd(i) = (d/dyduixCid,d), | = 1,2,...,m¢t

whan nbdcend has any other value, bdd is o dusay variabla.

eiabda

tha constant laabda in the helsholtz equation. if

fambda .gt. 8, a solution may not exist.
attempt to find o solution.

however, possol will

@ two-disansional array which spacifies the values of the right
side of tha halahol iz equation and boundary values <if any).
for | =23,...,a0nd j =23,...,n

¢, §) = 1CxCid, ¢ ).

on the boundaries f is dafinad by

mbdend f(,j) fiartl, >
] fla,yj f<a,yd}
1 uca,y<J» ucb,ycj»
2 ula,ycj » fib,ycj»
3 fla,y¢jr> f<b,yéj»
4 fla,y(J» ulb,y¢j >

nbdend f<,1) f<i,nt1)
e f(x(i),e)d fi{x(id,e)
1 uix(il,c) ulx<(i),d)
2 u(x(id,e) f(x<i),d)
3 f(x(i),e) f(x(i),d>
4 f(x<1),¢) uix<l),dd

f sust be dimensionad at least (m+l)X*(n+l).

j=1,2,...,n

i=1,2,...,0

calls for both tha solution u and the right side f
than the solution sust be spacified.



172 ¢ the row Cor first) disension of the array f as it appears in the

1RV e program calling pesert. this paraaater is used to specify the
174 ¢ varlable disension of f. idiaf sust ba ot least a1
1% ¢
176 ¢ .
17? ¢ a one—dimensional arroy that sust be provided by ths user for
178 ¢ sork spaca. tha langth of w aust be at least:
10 ¢ if nbdond=@ 2nlog2{n >n+2+aax{4n,0a H+I(nt1 »I* (et )
i: c I nbdend>@ 2<n+1 ){log2{n+1 -1 Y+ 2¢aax(2n, Bm }+3{n+1 J+3¥(a+l1 )

¢
182 ¢
183 ¢ L IR Bk B B BE B BN BN BN mwtwt LR 3K IR I I BN BN N I
184 ¢
185 c f
166 ¢ contains the solution u(i,j) of tha finite differenca
187 ¢ approximation for tha grid point (x(id,y(j>>, i = 1,2,...,m#1,
188 c J=1,2, .., .
180 ¢
198 ¢ partrb
191 ¢ if a combination of pariodic or derivative boundary conditions
192 ¢ is spacified for o poisson equation (lambdo = @), a solution may
193 ¢ not exist. pertrdb is o constant, calculated and subtracted froa
104 ¢ f, which ensures thot o solution exists. pescrt than computes
105 ¢ this solution, shich is a least squares solution to tha original
196 ¢ approxination. this solution is not unique and is unorealized.
197 ¢ the value of partrdb should be saal| cospared to the right side
108 ¢ f. otharwise , a solution is cbtainaed to an essantially
199 ¢ different problea. this comparison should always be made to

insure that a ssaningful solution has bean abtained.

ierror

an error flag that indicates inval ld input paraseters. except
for nuabars @ and 6, a solution is not atteapted.

SEURHIRRTE
oonNnnDoODRONDOOND

SBor 14 m .it. 5 (from biktri)

Qor 1S nnot in proper fore for nbdend = 1 {from biktri>
10 or 16 n not in propar fora for nbdend = @ (from biktri)

11 or 1? blktri failed shile cosputing resulis thotl depand on the
coafficient arrays w(ant’,w{bnl),elcnl) check thase arrays.

12 or 18 idiaf .I1t. sk (from blktri)

13 arror is arror 6 pplus errors 8 to 12.

l2l3l4
<

=8 no error.

=1 a.ge. b.

=2 mbdend .It. 8 or sbdend _gt. 4

=3 c .ga. d.
210 =3 nbdend .It. @ or nbdend .gt. 4
211 ¢ =06 Ilambda gt. 9 .

=7 idief .It. &t

=

v i

since this is the only seons of indicating a possibly incorrect
call to possol, the user should test ierror after the call.
[ ]
contains intersadiate valuas that sust not be destroyed if
puscrt will be called again with intl = {

bk bt bk Db b Dk b b
§ T HOOVNOPARWON
nonnonnonNonNnOOROODD

dimension fCidinf, 1)

17



CEETELEY FERPEFRREFEY FEFEEEERPAPERRERP TR R PR RS R

disension bdac(1> ,bdb(1) ,bdeci) ,bdd(1)
1 ' (1), xC1), y(1d
intagar ant ,bni,cni,oni,bal,cel,w!

14

chack for invalid poroseters.

non

partrb=9

ierror = @

if (u<1).0n.x{(m+1)) iarror = |

If (abdend.11.8 .or. shdend.gt.4) ierror = 2
if (y(1d.ge.y(n+1)) larror = 3

if <nbdend. 1.9 .or. nbdend.gt.4) lerror = 3
if Cidinf .IL. o#l) ierror = 7

if (iarror .ne. @) retun

npl = ntl
apl = i

sat indicies into tha w array for an,bn,on,am,be,ce and w for blktri
these aore Indicies to tha first aiesant of the arrays.

anisi

bni=ani+npl

cnisbni+npi

ani=cni+npi

bai=ani+api

caisbai+api

wimcaldapl

nn

np = nbdond+i
sp = abdend+1
c
c set start and stop |inits for y
goto <100,101,102,183,164),np
188 nstart=1
nstop=n

npp=9
goto 1035
181 nstarte2

162 nstort=2
163 nstort=1

104 nstorts1

npp=
165 nunk=nstop-nstart+!
c
c seat stort ond stop limits for x
goto ¢110,111,112,113,114),mp
116 mstart=i

astopem

18



288 app=8

209 goto 113

200 111 astort=2

201 ustop=a

202 pp=1

203 goto 115

204 112 mstort=2

205 astop=ap!

296 app~1

297 goto 113

208 113 mstaori=}

290 astop=apl

300 npp=1

281 goto 119

312 114 astartsl

383 astop=a

304 app=1

38 115 munkwastop-astart+l

386 c

@7 c fill om,ba,ce

08 do 120 i=2,m

k) del top=x(i+] >x(i)

310 del ta@ex (i »xCi-1)

k) B dal tax=@ _F*(de!| tagpidel tom)
312 wignl+i-1)=]. /{daltax®dai tm)
33 w(bal+i-1 )2, /(del taxprdal toxm yelabda
314 wlcal+i-1)=]. /(del|tax®del tap)
31T 128 continue

316 ¢

317 ¢ do boundaries at a

316 goto (1308,131,131,133,133),mp

310 ¢ pariodic
130 daltap=x(2)x(1)
321 del tom=x(apl >-x(m)
de) tax=8_ J*(de| taxptdel tam)
w(aml >=1. /(dal tox*dal taxm)
s(bai J=-2. /(del taxp*de! toxm )+einbda
sl{cal =1 /(dal tax*dal taxp?
goto 135
c specified
131 do 132 Jsnstart,nstop
132 1(2,j »=1¢2,j>1(1,) Yei{ami+l)
wiomi+l =0
goto 135
¢ derivative
133 dal taxp=x<2>x(1>
del taxmnda | taxp
dal tomdal tap
wiani =@
wibal =-2. /(dal toxp*del tmm)+einbda
wical =2 /(dal taxtdal tap>
do 134 j=nstort,nstop
348 134 1(1,jImf(1, j ¥bda(j Ydel taxpeicnl )
341 135 continue
342 c
343 ¢ do boundaries at b
goto (145,141,143,143,141) ,mp
345 ¢ specified

SREBRTEREERUNNRBENSS

£
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340 141 do 142 jonstort,nstop
M7 142 f(m,) mfln, ) )>-f(apl, j el(calin-1)
wical+e—1 =0
goto 143
¢ darivativa
143 deltom=x(mpl >x{(m)
dal taxp=del taom
dal taxmde | taom
wiami+m)=2_ /(daltax*dal taxm)
wibalmi=-2._ /(da! tmqp*dal tem >ealabda
wi{calind)=-f
do 144 j=nstort,nstop
144 f(apl, ] mfi(mpl, j >-bdb(] Yrde| tom*w{amlin)
145 continue
c
e fill an,bn,on
do 138 ]=2,n
deltaygpey(j+1>y(jd
del tamey(j >-y(j-1>
dai tay=0.3*(dal tayptdel taym)
wlani+j~1)=1. /(daltaysdeltam)
wibni+j-1)-2_ /{del toyp*dal taym)
wicni+)-1)=1. /(del tay*daltay)>
1580 continua
c
¢ do boundarias at ¢
goto (168,1061,161,163,163),np
c peariodic
166 daltoypmy(2)-y(1)
dal tagmey(npl >-yin?
dal toy=9 . 3¢(da! taypi+de! tam)
wiani =1, /(da! toy*del taym)
wibn] =-2. /(daltayprdeltam)
wieni =1 /(dal tay*del tayp)
goto 185
¢ spacified
161 do 162 i=mstart,astop
162 £¢i,2)=(Ci,2)>f(i,1 Yelanli+l)
sl(ani+1 =@
goto 163
¢ darivative
163 del taypey(2)-y(1)
dal tay=dal tayp
dal toy=de | tayp
w(ani 8
wibni =2 /(dal toyp*dal taym)

wicni =2, /(dal tay*dal tayp)
do 164 immstart,astop

164 1), 1m7({, 1 )+bde(] »dal toyp*eicnl)
163 continue
c
¢ do boundorias at d
goto (175,171,173,173,171) ,mp
c specified
171 do 172 i=astort, astop
172 (i, n=f(i,n)>fCi,npl Welonlién-1)
w(cni+n—1)=@
goto 175

Fii i EL b iE b R L EEREFRERE 1433443 PR R4 2
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404
403
400
497
488

410
411
412
413
414
413
410
417
418
419
420
421

5305545 0A0088285208280850408

g

¢ darivative
173 daltaymeynpl ydnd
dal tayp=dal tayn
del tay=da! toym
wlanini=2_/(dal tay*de) toym>
wlbnitn)—2_ /(del tayp?daltaym)
wicnl+n)=@
do 1M immstart,mstop
174 1, npl =<, npl >bdd(i Y*da! tayp*™ei(anim)
173 ocontinue
if (elabda) 232,240,230
239 ierror = 0
go to 232

for singuiar probless sust adjust data to insure that a solution
will axist.

nnNnnNan

240 if ((nbdend.eq.@ .or. nbdend.eq.3) .ond.
1 {abdend.eq.@ .or. sbdond.eq.3)) ,232
aspl = astort+l
astsl = astop-1

sl = 8.
hti=9
do 247 j=nstaort,nstop

¢

¢ sua up the Interior points
s =8
ht=9
do 242 i=aspl,estal
hex( i+l -xCi-1)
s = s+f(i,j "
hishtsh

242 continue

c
¢ odd the points at xain and xmax
c

c abdend=@
hi=x{2>x(1 ¥x{mtl >-x(n)
hawx(at1 d-xi{a—1)
if (abdcnd.eq.8) 243,

c

¢ mbdcnd=3
hi=x(2)>~x(1)
hamx(wti >x(m)

243 s=g+fiastart, j ¥hi+f(astop, j e
htsht+hi+ha

c

c

¢ chack for values along tha y boundary
if (j.gt.nstart) 244,
rey(2)>yC1)
if (nbdcnd.aq.8) h=hiy(nt+l )-y(n)
goto 246

244 if (J.1t.nstop) 245,

h=y(nt+1 >-yind
if (nbdond.eq.8) hay(mtl >yin—-1)

21



goto 240

heydj+1 >-y(j-1)
sl=g]l4+g®h

htishtl+ht*h

continue

partrbegi hti

do 239 j=mstart,nstop
do 249 i=astart,astop
«i,jd = <1, ) >partrd
249 continua

2350 continue

n

2 33

n

¢ initialize v if required
252 if Cintl.eq.1) 233,

n

call biktri <0,

X npp, mank, e(anitnstart-1),e(bnlinstart-1), e(eninstart-1),
X app,aunk, s(anitastart-1),e(baiiastart-1),9(calsastart-1),
X idiaf, f(astart,nstart), larrl,edwl))

n

¢ chack for an error during the initialization
if Clarrl.ne.0) 254,

¢
¢ solve tha probles
253 call biktri (1,

x npp, unk, s(anl+nstart-1),e(bninstart-1), s(cniinstart-1),
X app, aunk , s(anl+astort-1),e(baltastart-1), s(caltastart-1),
x idinf, f(astart, nstart), ierr1,e(el ))

[~

¢ chack for blkiri errors

254 if Clerrl.eq.0) 235,
jarrors|erri+7+|arror
raturn

256 continue

NN

fill in identical valuas when hove pariodic boundary conditions.

if (nbdend .na. @) go to 200
do 230 immstart,astop
f<i,npl1d = f(1,1)
239 continue
260 if {sbdcnd .na. 0) go to 262
do 201 j=nstort,nstop
fapl,)) = (1,})
201 continue
if (nbdend .eq. @) fiapl,npl)d = (1, npl)
2062 continue

SEERALNRLHIRARARERL AR RRRRE2333TRIN3ERARAERR
n

318 return

Ml e uses subr blktri
312 and

J3 ¢
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APPENDIX 2

This is a test problem for the POSSOL routine. It puts s nonuniform gridon a
rectangular region with derivative boundary conditions at y=c and y~d, and fized
boundary conditions at x=a and x=b. The correct solution for the region is:

U=05+sin(2* 11*x/(b-8))*sin(2* 11*y/(d-c))

prograa postst
®. j. orvis 1inl 4715/85

this is a test problea for the possols routine

OOJARAEWN ™
nnonnonNnNDDNDNDN
*EERENNRR

10 dimansion x<{100),y(100>, 1{100,100),w(1600)

11 disension bda(180),bdb{100),bde(188),bdd(188)
12 call dropfile(®)

13 call create(2,"posout”,2,-1)

14 cal! setcliose(2,1,1,0)

15 pi=3. 141502654

16

c
17 ¢ wtl |s the arbltrary nuaber of x grid points
c

for tha bast efficiency, set up the problea with m > n
19 =00

21 ¢ sat fixed boundary conditions ot x=a and =b
sbdend=1

c put in a non~linear x~grid

xlan=20.

do 100 i=i at+}

xCi Jmxlan®sin{pi*float(i-1>/(2.%float(m)))
100 continue

c ntl is the maber of y grids, its valua is restricted by nbdond
n=02

c sat derivative boundary conditions at y=c and y=d
nbdend=3

c put in a non-|linsar y-grid

ylermiS,

do 208 j=1,nt1

y¢} mylantsin(pi*float(j-15/(2.*floati(n)))
200 continue

2EBLLRHRLBRLLIBIBRRBR
n

c
2 ¢ some constants
43 pix=2.%pi /nlmt1)

o
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piy=2.%pi Agin+1)

sat lombda=@ for this problea
aisbda=®

nn

sat idiaf equal to tha first disension of f in the disension
stotesant above.
idinfu100

nNaDbD

set f

do 308 i=],at+]

do 309 |=1,mt]

(i, ] dm=(pixts2+p iyt g in(piydy(j 3 s in(pix®x(i ))
30 contimm

nn

n

¢ put in the valuas of tha derivatives at ysc and y=d
do 320 i=f,mtl
bde(i Mpiy*sinipix*x(i))>
bdd( i d=bde(i )

320 continue

n

¢ put tha valua of the fixed boundaries ot x=a and x=b
do 40 j=1,n+l
f(1,))=8.
f(mtl, | =3,

M0 contime

n

c solva the probies
coll possal (@,x,m,sbdend,bda,bdb,y,n,nbdend, bde,
1 bdd,elsbda, f, idiaf,pertrb, ierror,e)

n

¢ ierror should be tested for probleas with the solution
wite (2,500) ierror
500 format("ierror after solution = °,i%)
c
¢ for singuiar problans, tast partrb to be sure thot
¢ it is smoll compared to f .
orite (2,510) partrd
510 format(“pertrb = “,al12.5)
c
¢ print out the resuits
do 000 is], mt+i
write €2,5850) (fCi,)),j=1,m1)
0 forsat (4e12.3)
688 continue
c
¢ print out the difference between the solution and the correct valua
orite (2,050)
foraat“error valuas”)
do 800 i=i, m+l
write (2,550) ((fCi,]>5.-sin(pix®x(i)ginlpiydy(] i), j=1,n+1)
continua

'8

coll exit(®)
end
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APPENDIX 3
This is the same problem as that solved in Appendix 2, except that the boundary
conditions are now mixed along the side x-a. The boundary conditions are fixed from

grid points 1 through 10 and are derivative from grid points 11 through 63.

1 ¢ kdunikiakiciokgaiaiaiohiiohiduiofoliduiiiciaioiioiiaiiiajojoioiaiaiaoks

2c *

3c * program copaix

4c *

Sc * w . orvis 1Inl 4/15/85

Bc

7c¢ * this is a test probles for tha possols routine

8c * and the capacitance matric method. the troublesome boundary is
9c * at xug.

10 c * :

11 ¢ Skksskmkt ik idiiaiinold itk b iaiaiiiok

12 disansion x(109),y<100), (100,100),0(1900),c(28,20), ip{(20)
13 dinension bda(108),bdb(1808)5,bdc(108),bdd(188),batal(20)

14 call dropfile(®)

15 call creote(2, “capout”,2,-1)

16 call satclose(2,1,1,0)

1?7 pi=3. 141592634

18

c
19 ¢ atl is the arbitrary nuabar of x grid points
c

for the bast efficiency, set up the problam with m > n
21 »=08

¢ ntl is the mmber of y grids, its value is restricted by nbdend

=62

[

¢ put in @ non-linear x-grid
xlanm28.
do 100 i=f,mtl

(i dmxian®*sinipi*float(i-13/(2.*flootind))
168 continua
c
¢ put in a non|insar y-grid
ylen=13.
do 208 j=1,n+1
y()j ylan*sin{pi*float(j-1>/(2.#floatin)))
208 continue
e
c soma constants
pix=2.%pi /x(m+1)
piy=2.%pi fyin+l)

sat Iambdo=@ for this probles
alabdo=@

c
c

sat idinf equal to tha first disension of f in tha disension
statesent above.
idinf=100

U852 28BBLUURLBRLBIPYIRBRREN
nNnoO

n
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40 ¢ sat fixed bc at x=b and derivative at x=a

%

nnN
3
2
2
g
§
§
§
-3
3
F
8
2
2
g
o

n

bdd({ i >0
220 continue

c

¢ loop over the p points with fixed bc at x=i
Jpi=l

jpf=10

do 510 k=jpi, jpf

zaro all but tha k th elesent of f along i=1
do 308 i=1,m+i

do 308 j=i,n+1

<i,} ™8

continue

£C1, k=

nn

solva b*g(k) = atk)
call possol <(0,x,m,sbdend,bda,bdb,y,n,nbdend, bde,
1 bdd,elabda, f, idinf,partrd, ierror,w)

iarror should ba tested for probless with tha solution
write (2,500) ierror
580 forsat("ierror after solution = °,i%)

nn

nNn

store a columan of ¢
do 365 j=jpi,jpf
clj-jpi+1 kmf(1,j>

80 3585 continue

89 3510 continue

SEREBSI2BAIJAAIINNIESEIZZIZR2Z S22
non

nn

c

cali dec(jpf-jpi+l,28,c,ip,ler)
write (2,515) ier

515 format("ier from dec = *,i3)

¢
¢ bagin tha main solution sequanca
c
e

create v in f
do 520 i=], ¢l
do 529 |=1,n+1
101 (i, j m=(pirxt2+piy2 g inipix®™x(i Yy in(piy®ycj )
162 320 continue
183 ¢
104 ¢ put in tha boundary conditions
165 ¢ dont forget the fixed valuas at x=a
106 ¢ set the derivative values in this area to 0

§88S8RL88°8
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107 do 325 j=1,n+1

108 fimtl, ] m5.

109 bda(j pixtsinlpiy®y(} 2

110 525 continue

111 do 327 j=jpi, jpf

112 bda(j =@

113 8527 f£(1,) =3,

114 do 928 i=],at+}

113 bdeC i dmpiy*sinipix®<i )

116 bdd (1 dmbde(i>

117 3528 continue

118 ¢

110 ¢ solve bhutilda = v

128 call possol (@,x,m,mbdend,bda, bdb,y,n,nbdend, bde,
121 1 bdd,elnbda, f, idiaf,pertrbd, ierror,w)
122 orite (2,530) ierror

123 3538 formot{"ierror from possol = °,i3)

124 ¢

125 ¢ lood bata with the rhs v-a*u

126 do 335 k=jpi, jpf

127 batalk-jpi+l =S ~fC1,k)

128 335 continue

i2¢c

130 ¢ solva for beto

lgé call sol¢jpf~jpi+l,20,c,bata,ip)

132 ¢

133 ¢ reload f with the sodified vibata®e

134 do 340 i=1, ¥l

135 do 548 j=i,n+i

136 1<, j m=Cpixse24p iyt *2 s inpix®x{i ) ¥sin(piy®y(j ))
137 348 continue

138 ¢

139 ¢ put in the fixed boundary at x=b

140 do 542 j=i, n+l

141 f{mti, j =5,

142 542 continue

143 ¢

144 ¢ put in the fixed boundary at x=a and add the beta value
145 do 543 j=jpi, jpf

140 543 1(1,))=3. +bata(]-jpi+1)

147 ¢

148 ¢ solve b%usytbeta®e to gat the final u

149 call possol (8,x,m,abdend,bda,bdb,y,n, nbdend, bde,
159 1 bdd,elnbda, f, idiaf ,partrd, iarror,w)
151 wita (2,543) jerror

152 545 format("ierror from possol = ",i3)

133 ¢

154 ¢ print out the results

153 do 608 i={,m+1

136 wite (2,930) (f¢i,j), j=1,nt1)

157? 550 forsat (4e12.3)
158 0600 continue

1% ¢

168 ¢ print out tha difference batwesn the solution and tha correct value
161 write (2,6538)

162 632 format("error values®)

163 do 800 i=1, mtl

104 write (2,550) ((fCl,) 5. .%sin(pix®xCi)Psinlpiy®y()))), j=1, ntl)
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163 680 continue
166 ¢

167 call exit(®)
108 end

28



